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1 Modules over Rings

1.1 Hom Functor

Theorem 1.1. Let A be a ring and let

X ′
f−−−→ X

g−−−→ X ′′ −−−→ 0

be a sequence of A-modules. This sequence is exact if and only if, for every A-module Y , the
the induced sequence

HomA(X ′, Y )
HomA(f,Y )←−−−−−− HomA(X, Y )

HomA(g,Y )←−−−−−− HomA(X ′′, Y ) ←−−− 0

is exact.

Theorem 1.2. Let A be a ring and let

0 −−−→ Y ′
f−−−→ Y

g−−−→ Y ′′

be a sequence of A-modules. This sequence is exact if and only if, for every A-module X,
the the induced sequence

0 −−−→ HomA(X, Y ′)
HomA(X,f)−−−−−−→ HomA(X, Y )

HomA(X,g)−−−−−−→ HomA(X, Y ′′)

is exact.

1.2 Free Modules

Proposition 1.3 (Universal Property of Free Modules). Let M be a free module over a ring
A, with basis {xi}i∈I . Let N be an A-module and {yi}i∈I a subset of N . Then there is a
unique homomorphism φ : M → N so that φ(xi) = yi for all i.

Proposition 1.4 (Mapping a Basis to a Basis is an Isomophism). Let M and N be free
modules over a ring A with bases {xi}i∈I and {yi}i∈I respectively. Then the unique homo-
morphism φ : M → N such that φ(xi) = yi is an isomorphism (of A-modules).

Proposition 1.5. Free A-modules with bases of equal cardinality are isomorphic (as A-
modules).

Proposition 1.6. Let M be a free module over a ring A with basis {xi}i∈I . Then

M ∼=
⊕
i∈I

Axi

(Note: Axi = {axi : a ∈ A}.)

Proposition 1.7. Let M be a free module over a ring A with basis {xi}i∈I . Let a be a
two-sided ideal of A. Then aM is a submodules of M , and axi is a submodule of Axi. Then
Axi/axi ∼= A/a, and

M/aM ∼=
⊕
i∈I

Axi/axi

That is, M/aM is a free module over A/a (free as an A/a module).
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Proposition 1.8. Let M be a principal module over a commutative ring A, and let x ∈M so
that M = Ax. Then the map f : A→M by a 7→ ax is a surjective A-module homomorphism.
Let a = ker f . Then A/a ∼= M as A-modules.

Proposition 1.9. Every free module is projective.

1.3 Dual Module

Proposition 1.10. Let E be a finite rank free module over a commutative ring A. (E has a
finite basis.) Then E∨ is also free, with dimension equal to the dimension of E. In particular,
given a basis {xi}ni=1 of E, define fi : E → A by fi(xj) = δij. Then {fi}ni=1 is a basis of E∨.

Proposition 1.11. Let E be a finite rank free A-module. Then the map E 7→ E∨∨ defined
by x 7→ (f 7→ f(x)) is an isomorphism (of A-modules).

Proposition 1.12. Let U, V,W be finite rank free modules over a commutative ring A, and
let

0 −−−→ W
λ−−−→ V

φ−−−→ U −−−→ 0

be an exact sequence of A-modules. Then the induced sequence

0 −−−→ HomA(U,A) −−−→ HomA(V,A) −−−→ HomA(W,A) −−−→ 0

(in other notation)

0 −−−→ U∨ −−−→ V ∨ −−−→ W∨ −−−→ 0

is exact.

1.4 Modules over Principal Ideal Domains

Proposition 1.13. Let R be a principal ideal domain. Let F be a free R-module, and M a
submodule of F . Then M is free, and its rank is less than or equal to the rank of F . (Note:
It is very important that R is a PID. The result is not true when R is not a PID.)

Proposition 1.14. Let R be a PID, and let E be a finitely generated R-module. Then any
submodule of E is finitely generated.

Proposition 1.15. Let R be PID, and let E,E ′ be R-modules such that E ′ is free. Let
f : E → E ′ be a surjective homomorphism. Then there exists a free submodule F of E so
that f |F : F → E ′ is an isomorphism, and E = F ⊕ ker f .

Proposition 1.16. Let R be a PID, and let E be a finitely generated R-module. Then
E/Etor is free, and there is a submodule F of E so that E = Etor ⊕ F .

Proposition 1.17 (Classification of Finitely Generated Modules over PIDs). Let R be a
PID and let E be a finitely generated R-module. Then E is a direct sum

E =
⊕
p

E(p)
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where p ranges over a set of representative of associate classes of primes of R. Each E(p)
can be written as a direct sum

E(p) = R/(pk1)⊕ . . .⊕R/(pkn)

where 1 ≤ k1 ≤ . . . ≤ kn. The sequence k1, . . . , kn is uniquely determined.

Proposition 1.18. Let R be a PID and let E be a nonzero, finitely generated torsion R-
module. Then E is isomorphic to a direct sum of non-zero factors

E ∼= R/(q1)⊕ . . . R/(qn)

where q1, . . . , qn are non-zero non-units of R and q1|q2| . . . |qn. The sequence of ideals (q1), . . . , (qn)
is uniquely determined by the above conditions.

Proposition 1.19 (Elementary Divisors Theorem). Let R be a PID and let F be a free
R-module. Let M ⊂ F be a nonzero finitely generated submodule. Then there exists a basis
B of F and elements {e1, . . . , em} ⊂ B and non-zero elements a1, . . . am ∈ R so that

1. The elements a1e1, . . . , amem form a basis for M over R.

2. ai|ai+1 for i = 1, . . . ,m− 1.

The sequence of ideals (a1), . . . , (am) is uniquely determined by the above.

1.5 Tensor Products

Proposition 1.20 (Generators for Tensor Product). Let R be a commutative ring and let
E1, . . . , En be R-modules. Then

{x1 ⊗ . . .⊗ xn : xi ∈ Ei}

is a generating set for
⊗n

i=1Ei. That is, every element of
⊗n

i=1Ei can be written as

n∑
i=1

ri(x1 ⊗ . . .⊗ xn)

for xi ∈ Ei and ri ∈ R.

Proposition 1.21 (Linearity of Tensor Product). Let R be a commutative ring and let X, Y
be R-modules. Let x1, x2 ∈ X and y1, y2 ∈ Y and r ∈ R. Then

(x1 + x2)⊗ y1 = x1 ⊗ y1 + x2 ⊗ y1
x1 ⊗ (y1 + y2) = x1 ⊗ y1 + x1 ⊗ y2

r(x1 ⊗ y1) = (rx1)⊗ y1 = x1 ⊗ (ry1)

(These properties generalize in the obvious way to a tensor product of more than two mod-
ules.)
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Proposition 1.22 (Universal Property of Tensor Product). Let R be a commutative ring
and let X, Y,G be R-modules. Then for every multilinear map φ : X × Y → G, there is a
unique R-module homomorphism φ∗ : X ⊗R Y → G making the below diagram commute.

X × Y X ⊗R Y

G

⊗

φ
φ∗

That is, φ∗(x⊗ y) = φ(x, y). (Note that this generalizes to tensor products of more than two
modules.)

Proposition 1.23. Let m,n ∈ N be relatively prime. Then viewing Z/mZ and Z/nZ as Z
modules, Z/mZ⊗ Z/nZ = 0.

Proposition 1.24 (Associativity of Tensor Product). Let E1, E2, E3 be R-modules. There
is a unique isomorphism (E1 ⊗ E2)⊗ E3 → E1 ⊗ (E2 ⊗ E3) such that

(x⊗ y)⊗ z 7→ x⊗ (y ⊗ z)

Proposition 1.25 (Commutativity of Tensor Product). Let E,F be R-modules. There is a
unique isomorphism E ⊗ F → F ⊗ E such that x⊗ y 7→ y ⊗ x.

Proposition 1.26 (Functoriality of Tensor Product). Let fi : E ′i → Ei for i = 1, . . . , n be
a family of R-module homomorphisms. Then we get a map

∏
fi :

∏
E ′i →

∏
Ei. Then the

composition ⊗ ◦
∏
fi :

∏
E ′i →

⊗
Ei induces a map T :

⊗
E ′i →

⊗
Ei by the universal

property, and the following diagram commutes.

E ′1 × . . .× E ′n E ′1 ⊗ . . .⊗ E ′n

E1 × . . .× En E1 ⊗ . . .⊗ En

⊗

∏
fi T

⊗

The map T is sometimes notated as T = f1 ⊗ . . .⊗ fn.

Proposition 1.27. Let R be a commutative ring and E,F,G be R-modules. Then L(E,F ;G) ∼=
L(E ⊗ F,G). This isomorphism takes a bilinear map f : E × F → G to the induced map
f∗ : E ⊗ F → G where f∗(e⊗ f) = f(e, f).

Proposition 1.28. Let R be a commutative ring and E,F,G be R-modules. Then L(E,L(F,G)) ∼=
L(E,F ;G). For φ : E → L(F,G), this isomorphism is given by φ 7→ fφ wher fφ(x, y) =
φ(x)(y).

Proposition 1.29 (Tensor Product Distributes over Direct Sum). Let F, {Ei}i∈I be R-
modules. Then

F ⊗
⊕
i∈I

Ei ∼=
⊕
i∈I

(F ⊗ Ei)
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Proposition 1.30. Let E be a free R-module with basis {vi}i∈I . Let F be an R-module.
Then every element of F ⊗ E has a unique expression of the form∑

i∈I

yi ⊗ vi

where yi ∈ F and only finitely many terms are nonzero.

Proposition 1.31. Let E,F be free R-modules with respective bases {vi}i∈I and {wj}j∈J .
Then E ⊗ F is free with basis {vi ⊗ wJ}. As a result,

dim(E × F ) = (dimE)(dimF )

In particular, in the case where F = R, the tensor product E⊗R is isomorphic to E via the
correspondence x 7→ x⊗ 1.

Proposition 1.32. Let E,F be finite dimensional free R-modules. Then there is a unique
isomorphism

EndR(E)⊗ EndR(F )→ EndR(E ⊗ F )

so that
f ⊗ g 7→ T (f, g)

Proposition 1.33 (Tensor Functor is Right Exact). Let

0 −−−→ E ′
φ−−−→ E

ψ−−−→ E ′′ −−−→ 0

be an exact sequence of R-modules, and fix an R-module F . Then the sequence

F ⊗ E ′ −−−→ F ⊗ E −−−→ F ⊗ E ′′ −−−→ 0

is exact. (When left exactness holds, F is called a flat module.)

Proposition 1.34. Let R be a commutative ring with an ideal a. Let E be an R-module.
Then the map (R/a)× E → E/aE induced by

(a, x) 7→ ax (mod aE)

(where a ∈ R and x ∈ E) is bilinear and induces an isomorphism

(R/a)⊗ E ∼= E/aE

Proposition 1.35. Let m,n ∈ Z and let d = gcd(m,n). Then

(Z/mZ)⊗Z (Z/nZ) ∼= Z/dZ

Proposition 1.36. Let A be a nonzero finitely generated abelian group. Then A⊗Z A 6= 0.

Proposition 1.37. Q/Z⊗ZQ/Z = 0. (This is an example of a nonzero infinitely generated
abelian group whose tensor product with itself is zero.)
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1.6 Flat Modules

Proposition 1.38. Let F be an R module. The following are equivalent.

1. The functor E 7→ E ⊗ F is exact.

2. The functor E 7→ E ⊗ F is left exact.

3. For every injective R-module homomorphism E ′ → E, the induced map E ′⊗F → E⊗F
is injective.

(E,E ′ are R-modules and tensors are over R.)

Proposition 1.39. Projective modules are flat.

Proposition 1.40. Let R be a commutative ring. Then R is flat as an R-module.

Proposition 1.41. Let R be a commutative ring and let {Fi}i∈I be a collection of R-modules.
Then ⊕i∈IFi is flat if and only if each Fi is flat.

Proposition 1.42. Let R be a principal ideal domain. Then an R-module F is flat if and
only if it is torsion free.

Proposition 1.43. Let R be an integral domain, and let M be an R-module with torsion.
Then M is not flat.

Proposition 1.44. Let R be a commutative ring and let F be an R-module. The following
are equivalent:

1. F is flat.

2. TorR1 (F,M) = 0 for every R-module M .

3. TorRi (F,M) = 0 for all i ∈ N and every R-module M .

4. TorR1 (F,R/I) = 0 for all ideals I ⊂ R.

Proposition 1.45. Let F be a flat R-module and supppose that 0 → N → M → F → 0 is
an exact sequence of R-modules. Then for any R-module E, the sequence 0 → N ⊗ E →
M ⊗ E → F ⊗ E → 0 is exact.

Proposition 1.46. Let R be a commutative ring, and let F be an R-module. Then F is flat
if and only if for every ideal I ⊂ R the natural map I ⊗ F → IF given by x⊗ f → xf is an
isomorphism.

Proposition 1.47. Let R be a commutative ring, and let F be an R-module. Then F is flat
if and only if for every ideal I ⊂ R, the sequence 0→ I ⊗ F → R⊗ F → (R/I)⊗ F → 0 is
exact.

Guide to relationships between free, projective, and flat:
free =⇒ projective =⇒ flat
Over Z, projective ⇐⇒ free
Over a PID, flat ⇐⇒ torsion free
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1.7 Homology

Proposition 1.48. Let R be a ring and let

. . .
di−3

−−−→ Ei−2 di−2

−−−→ Ei−1 di−1

−−−→ Ei di−−−→ Ei+1 di+1

−−−→ . . .

be an exact sequence of R modules. Then for each i we have an exact sequence

0 −−−→ ker di −−−→ Ei di−−−→ im di −−−→ 0

Proposition 1.49. Let R be a commutative ring and let M be an R-module. Then there is
a free resolution of M .

Proposition 1.50. Let R be a ring and let E ′, E, E ′′ be chain complexes of R-modules,
forming an exact sequence of morphisms of degree zero,

0 −−−→ E ′
f−−−→ E

g−−−→ E ′′ −−−→ 0

We can write this out fully as

d′i−2

y di−2

y d′′i−2

y
0 −−−→ E ′i−1

fi−1−−−→ Ei−1
gi−1−−−→ E ′′i−1 −−−→ 0

d′i−1

y di−1

y d′′i−1

y
0 −−−→ E ′i

fi−−−→ Ei
gi−−−→ E ′′i −−−→ 0

d′i

y di

y d′′i

y
0 −−−→ E ′i+1

fi+1−−−→ Ei+1
gi+1−−−→ Ei+1 −−−→ 0

d′i+1

y di+1

y d′′i+1

y
0 −−−→ E ′i+2

fi+2−−−→ Ei+2
gi+2−−−→ E ′′i+2 −−−→ 0

d′i+2

y di+2

y d′′i+2

y
Then there exists a morphism δ : H(E ′′)→ H(E ′) of degree 1, that is, a family of morphisms
δi : Hi(E

′′)→ Hi+1(E
′), fitting into the following long exact sequence:

. . .
δi−1−−−→ Hi(E

′)
Hi(f)−−−→ Hi(E)

Hi(g)−−−→ Hi(E
′′)

δi−−−→
δi−−−→ Hi+1(E

′)
Hi+1(f)−−−−→ Hi+1(E)

Hi+1(g)−−−−→ Hi+1(E
′′)

δi+1−−−→ . . .

Proposition 1.51. Let f, g : E → E ′ be homotopic morphisms of complexes. Then f, g
induce the same homomorphism on homology, that is, H(fn) = H(gn) : Hn(E)→ Hn(E ′).
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1.8 Projective Modules

Theorem 1.52. Let A be a ring and let P be an A-module. The following are equivalent.
(1) Given a homomorphism f : P → M ′′ and a surjective homomorphism g : M → M ′′,
there exists a homomorphism h : P → M so that g ◦ h = f . That is, given a commutative
diagram as below, the dotted line can be filled in.

P

M M ′′ 0

h
f

g

(2) Every exact sequence 0→M ′ →M ′′ → P → 0 splits.
(3) There exists a module M so that P ⊕M is free.
(4) The functor M 7→ HomA(P,M) is exact.

Proposition 1.53. Let R be a ring and P be an R-module. The following are equivalent.

1. P is projective.

2. ExtnR(P,M) = 0 for all R-modules M and n ≥ 1.

3. Ext1R(P,M) = 0 for all R-modules M .

Proposition 1.54. Every free module is projective.

Proposition 1.55. Over a PID, every projective module is free. (Thus over a PID, free is
equivalent to projective.)

Proposition 1.56. Every projective module is flat.

1.9 Injective Modules

Proposition 1.57. Fix a ring R, and let I be an R-module. The following are equivalent.
(1) Given an exact sequence 0→M ′ →M of R-modules and a homomorphism f : M ′ → I,
there exists h so that the following diagram commutes.

0 M ′ M

I

f
h

(2) The functor M 7→ HomR(M, I) is exact.
(3) Every exact sequence 0→ I →M →M ′′ → 0 splits.

Proposition 1.58. Let R be a ring and I be an R-module. The following are equivalent.

1. I is injective.

2. ExtnR(M, I) = 0 for all R-modules M and n ≥ 1.
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3. Ext1R(M, I) = 0 for all R-modules M .

Proposition 1.59. A product of injective modules is injective. Conversely, if a product of
modules is injective, then each of the modules is injective.

Proposition 1.60. For Z modules, injective is equivalent to divisible.

Proposition 1.61 (Baer’s Criterion). Let R be a ring, and let M be an R-module. Then
M is injective if and only if for every ideal I ⊂ R and every R-linear map f : I → M , we
can find f̃ : R→M making the following diagram commute.

0 I R

M

f
f̃
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1.10 Summary/Comparison of Injective/Projective R-modules

Projective Injective
Submodules need NOT be projective Submodules and quotient

modules need NOT be injective
free =⇒ projective
over a PID, free ⇐⇒ projective
projective =⇒ flat

for Z-modules, injective ⇐⇒ divisible
for any ring, injective =⇒ divisible

P is projective and n ≥ 1 I is injective and n ≥ 1
=⇒ ∀M ExtnR(P,M) = 0 =⇒ ∀M ExtnR(M, I) = 0

∀M Ext1R(P,M) = 0 ∀M Ext1R(M, I) = 0
=⇒ P is projective =⇒ I is injective

P is projective ⇐⇒ I is injective ⇐⇒
∀M,∀n ≥ 1 ExtnR(P,M) = 0 ∀M,∀n ≥ 1 ExtnR(M, I) = 0

P is projective =⇒ I is injective =⇒
M 7→ HomR(P,M) is exact M 7→ HomR(M, I) is exact

0→M ′ →M → P → 0 0→ I →M →M ′′ → 0
aways splits always splits

P is projective ⇐⇒ Every module is a submodule
∃M such that P ⊕M is free of an injective module

P1, P2 are projective ⇐⇒ I1, I2 are injective ⇐⇒
P1 ⊕ P2 is projective I1 ⊕ I2 is injective

If φ : M →M ′′ is surjective If ψ : M ′ →M is injective
and f : P →M ′′, then and f : M ′ → I, then

∃f̃ : P →M such that φf̃ = f ∃f̃ : M → I such that f̃ψ = f

P 0 M ′ M

M M ′′ 0 I

f̃
f

ψ

f

f̃

φ

1.11 Ext and Tor

Proposition 1.62 (Computation of Tor). Let R be a ring, and let A,B be R-modules. Let

. . . P2 P1 P0 A 0
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be a projective resolution of A. After we apply the functor −⊗RB and drop the term involving
A, we get an induced chain complex

. . . P2 ⊗R B P1 ⊗R B P0 ⊗R B 0

Then the homology of this sequence is TorRn (A,B). (The n-th homology occurs at the tensor
involving Pn.)

Proposition 1.63 (Computation of Ext). Let R be a ring, and let A,B be R-modules. Let

. . . P2 P1 P0 A 0

be a projective resolution of A. After we apply the functor HomR(−, B) and drop the term
involving A, we get an induced chain complex

0 HomR(P0, B) HomR(P1, B) HomR(P2, B) . . .

(Note: The direction is reverse because HomR(−, B) is contravariant.) Then the homology
of this sequence is ExtRn (A,B). (The n-th homology occurs at the Hom involving Pn.)

Proposition 1.64 (Symmetry of Tor).

TorRn (A,B) ∼= TorRn (B,A)

Proposition 1.65 (”Linearity” of Ext with Respect to Products).

ExtnR

(⊕
α

Aα, B

)
∼=
∏
α

ExtnR(Aα, B)

ExtnR(

(
A,
∏
β

Bβ

)
∼=
∏
β

ExtnR(A,Bβ)

2 Field Theory

2.1 Review of Rings and Polynomials

Proposition 2.1. Let R be an integral domain. Then R[x] is an integral domain.

Proposition 2.2. Let k be a field. Then the polynomial ring k[x] is a principal ideal domain.

Proposition 2.3. Let A be a commutative ring and I ⊂ A an ideal. Then A/I is a field if
and only if I is maximal.

Proposition 2.4. Let A be a commutative ring and I ⊂ A an ideal. Then A/I is an integral
domain if and only if I is prime.

Proposition 2.5. Let A be an integral domain. If a ∈ A such that a 6= 0 and the principal
ideal 〈a〉 is prime, then a is irreducible.
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Proposition 2.6. Let A be a unique factorization domain. Then p ∈ A is irreducible if and
only if 〈p〉 is a prime ideal.

Proposition 2.7 (Eisenstein’s Criterion). Let R be a unique factorization domain, and let
K be the quotient field of R. Let f(x) = anx

n + . . .+ a0 ∈ R[x] with degree n ≥ 1. Let p be
a prime in R such that

p|a0, a1, . . . an−1 p - an p2 - a0
Then f(x) is irreducible in K[x].

Proposition 2.8 (Integral Root Test). Let R be a unique factorization domain with quotient
field K. Let f(x) = anx

n + . . . + a0 ∈ R[x]. Let α ∈ K be a root of f , written as α = b/d
where b, d ∈ R and b, d are relatively prime. Then b|a0 and d|an. In particular, if f is monic,
then α = b so α ∈ R and α|a0. (Note: The most common application of this is when R = Z
and K = Q.)

2.2 Algebraic Extensions

Proposition 2.9. Every finite field extension is algebraic. That is, if E is a finite field
extension of F , then every element of E is algebraic over F . (Note: Converse is false.)

Proposition 2.10. Let G,F,E be fields with G ⊂ F ⊂ E. Then

[E : G] = [E : F ][F : G]

In particular, if {xi}i∈I is a basis for F over G and {yj}j∈J is a basis for E over F , then
{xiyj}(i,j)∈I×J is a basis for E over G.

Proposition 2.11. Let G,F,E be fields with G ⊂ F ⊂ E. Then E is a finite extension of
G if and only if E is finite over F and F is finite over G.

Proposition 2.12. Let k ⊂ E be a field extension and let α be algebraic over k. Then
k(α) = k[α] and k(α) is finite over k. Furthermore,

[k(α) : k] = deg Irr(α, k)

That is, the degree of the field extension is equal to the degree of the minimal irreducible
polynomial.

Proposition 2.13. Let k ⊂ E be a finite field extension. Then E is finitely generated over
k.

Proposition 2.14. Let k ⊂ E be a field extension, and suppose E = k(α1, . . . , αn). Let F
be a field extension of E, so that E,F ⊂ L. Then EF = F (α1, . . . , αn).

Proposition 2.15. Let E = k(α1, . . . , αn) be a finitely generated extension of a field k, and
suppose that αi is algebraic over k for each i. Then E is a finite and algebraic extension of
k.

Proposition 2.16. The class of algebraic extensions is distinguished.

Proposition 2.17. The class of finite extensions is distinguished.

Proposition 2.18. The class of finitely generated extensions is distinguished. (Not proven
in this class,)

14



2.3 Algebraic Closure

Proposition 2.19. Let k be a field, and k ⊂ E be an algebraic extension. Let σ : E → E
be an embedding of E into itself over k. (That is, σ|k = Idk.) Then σ : E → E is an
automorphism (that is, it is not merely injective, but also surjective.)

Proposition 2.20. Let k,E1, E2, E, L be fields with k ⊂ E1, E2 ⊂ E, and let σ : E → L be
an embedding. Then

σ(E1E2) = σ(E1)σ(E2)

(The compositum of the images is the image of the compositum.)

E σ(E)

E1E2 σ(E1)σ(E2) = σ(E1E2)

E1 E2 σ(E1) σ(E2)

k σ(k)

Proposition 2.21. Let k be a field and f ∈ k[x] of degree ≥ 1. Then there exists an
extension E of k in which f has a root. (In particular, if f is irreducible we can choose the
field k[x]/(f).)

Proposition 2.22. Let k be a field. Then there exists an algebraically closed field k con-
taining k as a subfield. Furthermore, the extension k ⊂ k is algebraic. (As will be shown
later, this field is unique up to isomorphism.)

Proposition 2.23. Let k be a field and k ⊂ E an algebraic extension, and σ : k → L an
embedding of k into an algebraically closed field L. Then there exists an extension τ : E → L
so that τ |k = σ. If E is algebraically closed and L is algebraic over σ(k), then τ is an
isomorphism.

E L = k

k

τ

σ

Proposition 2.24. Let k be a field and E,E ′ be algebraic extensions of k, with E,E ′ alge-
braically closed. Then there is an isomorphism τ : E → E ′ such that τ |k = Idk.

E E ′

k k

τ

IdK

15



Proposition 2.25. If k is an infinite field, then any algebraic extension of k has the same
cardinality of k.

Proposition 2.26. If k is a finite field, then the algebraic closure of k is countably infinite.
(No finite field is algebraically closed.)

2.4 Splitting Fields and Normal Extensions

Proposition 2.27. Let E,E ′ be splitting fields of f ∈ k[x]. Then there is an isomorphism
τ : E → E ′ such that τ |k = k. If k ⊂ E ⊂ k, then any embedding φ : E ′ → k satisfying
φ|k = Idk is an isomorphism φ : E ′ → E.

k

E E ′

k

Proposition 2.28. Let k be a field with algebraic closure k. If we have a tower of algebraic
extensions k ⊂ K ⊂ k, then the following are equivalent:

1. K is the splitting field of a family of polynomials in k[x].

2. Every embedding σ : K → k is actually an isomorphism σ : K → K. (That is,
embeddings of splitting fields into the algebraic closure always map into the splitting
field.)

3. Every irreducible polynomial in k[x] that has a root in K splits into linear factors in
K.

(An extension satisfying the above is called normal.)

Proposition 2.29. Normal extensions remain normal under lifting. That is, if k ⊂ E ⊂ K
and K is normal over k, then K is normal over E.

K

E

k

If K1, K2 are normal over k and K1, K2 ⊂ L, then the compositum K1K2 is normal over k,
as is K1 ∩K2.

16



2.5 Separable Extensions

Proposition 2.30. Let F,E, L be fields with L algebraically closed and F ⊂ E and let
σ : F → L be an embedding. Define

Sσ = {τ : E → L : τ |F = σ}

That is, Sσ is the set of possible extensions of σ to E. Then the size of Sσ is independent of
σ.

E L

F

τ

σ

Proposition 2.31. Let k ⊂ F ⊂ E be a tower of fields. Then

[E : k]s = [E : F ]s[F : k]s

Furthermore, if [E : k] is finite, then [E : k]s is finite and

[E : k]s ≤ [E : k]

(Later we can show that [E : k]s divides [E : k] whenever [E : k] is finite.)

Proposition 2.32. Let k ⊂ F ⊂ E be a tower of fields with [E : k] finite. Then

[E : k]s = [E : k] ⇐⇒ [E : F ]s = [E : F ] and [F : k]s = [F : k]

Proposition 2.33. Let k ⊂ F ⊂ K be a tower of fields and let α ∈ K be separable over k.
Then α is separable over F .

Proposition 2.34. Let k ⊂ E be a finite extension. Then E is separable over k if and only
each α ∈ E is separable over k.

Proposition 2.35. Let k ⊂ E be an algebraic extension, generated by {αi}i∈I . If each αi is
separable over k, then E is separable over k.

Proposition 2.36. Separable extensions form a distinguished class.

Proposition 2.37 (Primitive Element Theorem). Let k ⊂ E be a finite extension. The
following are equivalent:

1. There exists α ∈ E so that E = k(α).

2. There are only finitely many fields F such that k ⊂ F ⊂ E.

If E is separable over k, then there exists α ∈ E such that E = k(α).

17



2.6 Finite Fields

Proposition 2.38. If a field has q (finite) elements, then q = pn where p is a prime and
n ∈ N.

Proposition 2.39. For each prime p and each n ∈ N, there exists a unique field Fpn of
order pn. It is a subfield of the algebraic closure of Fp = Z/pZ. It is the splitting field of the
polynomial

f(x) = xp
n − x

over Fp, and the elements of Fpn are the roots of f . Every finite field is isomorphic to exactly
one Fpn.

Proposition 2.40. Let Fq be a finite field (with q elements). Let n ∈ N. In a given algebraic
closure F q, there exists a unique extension of Fq of degree n, which is Fqn.

Proposition 2.41. The multiplicative group of a finite field is cyclic.

Proposition 2.42. Let Fq be the finite field with q = pn elements. The group of automor-
phisms of Fq is cyclic of size n, and is generated by the Frobenius map x 7→ xp.

Proposition 2.43. Let p be prime and let m,n ∈ N. In any algebraic closure of Fp, the
subfield Fpn is contained in Fpm if and only if n divides m. When n divides m, Fpm is a
normal and separable extension of Fpn, and the group of automorphisms of Fpm over Fpn is
cyclic of order m

n
, generated by φn. (φ is the Frobenius map.)

2.7 Inseparable Extensions

Proposition 2.44. Let k be a field with algebraic closure k, and let α ∈ k. Let f = Irr(α, k).
If char k = 0, then all roots of f have multiplicity one (f is separable). If char k = p for a
prime p, then there exists n ∈ N so that every root of f has multiplicity pn, and

[k(α) : k] = pn[k(α) : k]s

and αp
n

is separable over k.

Proposition 2.45. Let k ⊂ E be a finite extension. Then the separable degree [E : k]s
divides the degree [E : k]. We have

char k = 0 =⇒ [E : k]

[E : k]s
= 1

char k = p =⇒ [E : k]

[E : k]s
= pn for some n ∈ N

That is, every extension of a field of characteristic zero is separable.
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2.8 Galois Theory

Proposition 2.46 (The Galois Correspondence). Let K be a finite Galois extension of k,
with Galois group G. We define a map from the set of subgroups H of G to the set of
subfields of K containing k by H 7→ KH (where KH is the fixed field of H). This is a
bijection. Furthermore, KH is Galois over k if and only if H is normal in G. If H is normal
in G, then the map G→ H by σ 7→ σ|KH induces an isomorphism of G/H to Gal(KH/k).

Proposition 2.47. Let K be a Galois extension of k with Galois group G. Then k = KG.
If F is an intermediate field satisfying k ⊂ F ⊂ K, then K is Galois over F . Furthermore,
the map

F 7→ Gal(K/F )

from the set of intermediate fields to the set of subgroups of G is injective.

Proposition 2.48. Let k ⊂ K be a Galois extension with Galois group G. Let F, F ′ be
intermediate fields (k ⊂ F, F ′ ⊂ k) and let H,H ′ be the subgroups of G belonging to F, F ′

respectively (H = Gal(K/F ), H ′ = Gal(K/F ′)). Then

1. H ∩H ′ belongs to FF ′ (that is, H ∩H ′ = Gal(K/FF ′)).

2. The fixed field of the smallest subgroup of G containing H and H ′ is F ∩ F ′.

3. F ⊂ F ′ if and only if H ′ ⊂ H (the correspondence is inclusion reversing).

Proposition 2.49. Let E be a finite separable extension of k. Let K be the smallest normal
extension of k containing E. Then K is finite Galois over k. There are only a finite number
of intermediate fields F satisfying k ⊂ F ⊂ E.

K

E

F

k

Proposition 2.50. Let E be a algebraic separable extension of k, and suppose there exists
n ∈ N so that every element of E as degree ≤ n over k. Then E is finite over k and
[E : k] ≤ n.

Proposition 2.51 (Artin’s Theorem). Let K be a field and let G be a finite group of au-
tomorphisms of K with |G| = n. Let k = KG be the fixed field. Then K is a finite Galois
extension of k, and Gal(K/k) = G. Furthermore, [K : k] = n. That is, if K/k is a finite
Galois extension, then [K : k] is the size of the Galois group Gal(K/k).

Proposition 2.52. Let L/K be a finite Galois extension. Then the order of the Galois
group of L over K is equal to the degree of the field extension [L : K].
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Proposition 2.53. Let K be a finite Galois extension of k and let G = Gal(K/k). Then
every subgroup H of G belongs to some subfield F so that k ⊂ F ⊂ K (that is, H =
Gal(K/F )).

Proposition 2.54. Let K be a Galois extension of k with Gal(K/k) = G. Let F be a
subfield k ⊂ F ⊂ K, and let H = Gal(K/F ). Then F is normal over k if and only if H is
normal in G. If F is normal over k, then the restriction map Gal(K/k)→ Gal(F/k) given
by σ 7→ σ|F is a homomorphism with kernel H. Thus

Gal(F/k) ∼=
Gal(K/k)

Gal(K/F )

Proposition 2.55. Let K/k be an abelian Galois extension. If F is an intermediate field
k ⊂ F ⊂ K, then F is an abelian Galois extension of k. This same proposition holds
true replacing “abelian” with “cyclic.” (Normally, F/k may not even by Galois, but the
corresponding subgroup is normal because the Galois group is abelian in this case.)

Proposition 2.56 (Lifting of Galois Extensions). Let k ⊂ K be a Galois extension and let
k ⊂ F be any extension, and suppose that K,F are contained in some field. Then k ⊂ KF
is Galois, and K ∩ F ⊂ K is Galois. Furthermore, the map Gal(KF/F )→ Gal(K/K ∩ F )
given by σ 7→ σ|K is an isomorphism.

KF

K F

K ∩ F

k

Gal(KF/F )

Gal(K/K∩F )

Proposition 2.57. Let k ⊂ K be a finite Galois extension. Let F be any extension of k.
Then [KF : F ] divides [K : k].

Proposition 2.58. Let K1, K2 be Galois extensions of k, where K1, K2 are contained in
some field. Then the compositum K1K2 is Galois over k. Furthermore, the map

Gal(K1K2/k)→ Gal(K1/k)×Gal(K2/k) σ 7→ (σ|K1 , σ|K2)

is injective. If K1 ∩K2 = k, then it is an isomorphism.

K1K2

K1 K2

K1 ∩K2

k

Gal(K1/k) Gal(K2/k)
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Proposition 2.59. Let K/k and L/k be abelian extensions of k, and K,L contained in some
field. Then KL/k is an abelian extension.

Proposition 2.60. If K/k is an abelian extension, and E/k is any extension, then KE/k
is an abelian extension.

Proposition 2.61. If K/k is an abelian extension, and k ⊂ E ⊂ K, then E/k is abelian
and K/E is abelian.

2.9 Computing Galois Groups of Polynomials

Proposition 2.62. Let f ∈ k[x] be a separable polynomial of degree n with Galois group G.
Then the element of G permute the roots of f , so G embeds into Sn.

Proposition 2.63 (Classification of Quadratic Extensions). Let k be a field of characteristic
6= 2. Let f(x) = x2 − a ∈ k[x], where a is not a square in k. Then f is separable and
irreducible, and if α is a root in k, then k(α) is the splitting field of f . Furthermore, the
Galois group of f is cyclic of order 2.

Proposition 2.64. Let K/k be an extension of degree 2, with char k 6= 2. Then there exists
a ∈ k such that K = k(α) and α2 = a.

Proposition 2.65. Let f ∈ k[x] be a cubic. Then f can be written in the form f(x) =
x3 + ax+ b for a, b ∈ k. Concretely, given a general cubic

ax3 + bx2 + cx+ d

Make the subsitution x = y − b
3a

and get

y3 +

(
3ac− b2

3a2

)
y +

(
2b3 − 9abc+ 27a2d

27a3

)
Note that since we just performed a linear substitution, the roots of the new cubic are just
a linear shift of the roots of the original cubic. In particular, the Galois group remains the
same.

Proposition 2.66 (Classification of Cubic Extensions). Let k be a field of characteristic
6= 2, 3, and let f(x) = x3 + ax + b ∈ k[x]. Note that f is always separable, and that f is
irreducible if and only if it has no root in k.

Now assume f is irreducible, and let G be the Galois group. Then G ∼= S3 if and only
if ∆(f) is a NOT square in k, and G ∼= Z/3Z otherwise (i.e. when the discriminant IS a
square).

Proposition 2.67. Let f(x) = Q[x] be irreducible with deg f = p for a prime p. If f has
precisely two nonreal roots in C, then the Galois group of f is Sp.

Proposition 2.68. Let f(x) ∈ Z[x] be a monic polynomial, and let p be a prime. Let
f ∈ Z/pZ[x] be the polynomial obtained by reducing the coefficients mod p. If f is separable,
then there is a bijection between the roots of f and f , and an embedding of the Galois group
of f into the Galois group of f .

In particular, if f factors as a product of irreducible polynomials of degree n1, . . . , nk,
then the Galois group of f contains an element that can be written as a product of disjoint
cycles of length n1, . . . , nk.
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2.10 Roots of Unity

Proposition 2.69. Let k be a field, and let n,m be relatively prime integers, not divisible by
char k. Let µn and µm be the cyclic groups of nth and mth roots of unity respectively. Then

µmn ∼= µn × µm

Proposition 2.70. Let k be a field, and n ∈ N not divisible by char k. Let ζn be a primitive
nth root of unity in k. Then k(ζn)/k is a cyclic Galois extension, of order d where d|n.

Proposition 2.71. Let ζ be a primitive nth root of unity over Q. Then

[Q(ζ) : Q] = φ(n)

where φ is the Euler totient function. Furthermore, we have an isomorphism

Gal(Q(ζ)/Q) ∼= (Z/nZ)∗

Proposition 2.72. Let n,m ∈ N be relatively prime. Let ζn, ζm be primitive nth and mth
roots of unity respectively. Then

Q(ζn) ∩Q(ζm) = Q

Proposition 2.73. Let ζp be a primitive pth root of unity, and define

S =

p−1∑
v=1

(
v

p

)
ζvp

Then

S2 =

(
−1

p

)
p

Consequently, every quadratic extension of Q is contained in a cyclotomic extension.

Proposition 2.74 (Artin). Let G be a monoid and k a field. Let χ1, . . . , χn : G → k× be
distinct characters. Then they are linearly independent (over k).

Proposition 2.75. Let k be a field and α1, . . . , αn be distinct elements of k×. If∑
i

aiα
m
i = 0

for all m ∈ N, then ai = 0 for all i. (Note: To prove this, apply the previous theorem to the
characters m 7→ αmi from Z≥0 to k×.)
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2.11 Norm and Trace

Proposition 2.76 (Properties of Norm). Let E/k be a finite extension. Then the norm NE/k

is a multiplicative homomorphism E× → k×. If k ⊂ F ⊂ E is a tower of finite extensions,
then

NE
k = NF

k ◦NE
F

If E = k(α) and f(x) = Irr(α, k) = xn + an−1x
n−1 + . . .+ a0, then

N
k(α)
k = (−1)na0

Proposition 2.77 (Properties of Trace). Let E/k be a finite extension. Then the trace
TrE/k is an additive homomorphism E → k. If k ⊂ F ⊂ E is a tower of finite extensions,
then

TrEk = TrFk ◦TrEF

If E = k(α) and f(x) = Irr(α, k) = xn + an−1x
n−1 + . . .+ a0, then

Tr
k(α)
k (α) = −an−1

Proposition 2.78 (Linear Map/Matrix Interpretation of Norm and Trace). Let E/k be
a finite extension. For α ∈ E, define mα : E → E by x 7→ αx. Viewing E as a finite
dimensional k-vector space, mα is a linear map. Then

NE
k (α) = det(mα) TrEk (α) = Tr(mα)

Proposition 2.79. Let E/k be a finite separable extension. Then the map E×E → k given
by

(x, y) 7→ Tr(xy)

is a bilinear pairing. Furthermore, if we define Trx : E → k by Trx(y) = Tr(xy), then the
map E → E∧ given by x 7→ Trx is an isomorphism.

Proposition 2.80. Let E/k be a finite separable extension, and let σ1, . . . , σn be the distinct
embeddings of E into k over k. Let w1, . . . , wn be a basis of E over k. Then the vectors

ξi = (σi(w1), . . . , σi(wn)) i = 1, . . . , n

are linearly independent over E.

Proposition 2.81 (Hilbert’s Theorem 90). Let K/k be a cyclic Galois extension of degree
n, with Galois group G = 〈σ〉. Let β ∈ K. Then NK

k (β) = 1 if and only if there exists α 6= 0
in K such that β = α

σ(α)
.

Proposition 2.82 (Kummer). Let k be a field, and let n ∈ N with gcd(n, char k) = 1 (if
char k 6= 0). Assume that there is a primitive nth root of unity in k.

1. Let K/k be a cyclic Galois extension of degree n. Then there exists α ∈ K such that
K = k(α), and α satisfies the equation xn − a = 0 for some a ∈ k.
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2. If a ∈ k and α is a root of xn− a, then k(α)/k is a cyclic Galois extension of degree d
where d|n, and αd ∈ k.

Proposition 2.83 (Hilber’s Theorem 90, Additive Form). Let K/k be a cyclic Galois ex-
tension of degree n with Galois group G = 〈σ〉. Let β ∈ K. Then TrKk (β) = 0 if and only if
there exists α ∈ K such that β = α− σ(α).

Proposition 2.84 (Artin-Schreier). Let k be a field of characteristic p > 0.

1. If K/k is a cyclic Galois extension of degree p, then there exists α ∈ K such that
K = k(α) and α satisfies the equation xn − x− a = 0 for some a ∈ k.

2. If a ∈ k, then the polynomial xn − x − a either has one root in k or is irreducible. If
it has a root in k, then all roots lie in k. If it is irreducible, then k(α)/k is a cyclic
Galois extension of degree p.

2.12 Solvable and Solvable by Radicals

Proposition 2.85. Solvable extensions form a distinguished class.

Proposition 2.86. Extensions that are solvable by radicals form a distinguished class.

Proposition 2.87. Let E/k be a finite separable extension. Then E/k is solvable by radicals
if and only if it is solvable.
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