Theorems Algebra qualifying course MSU, Spring 2017

Joshua Ruiter

October 15, 2019

This document was made as a way to study the material from the spring semester algebra qualifying course at Michigan State University, in spring of 2017. It serves as a companion document to the "Definitions" review sheet for the same class.

Contents

1	Mod	Modules over Rings		
	1.1	Hom Functor	3	
	1.2	Free Modules	3	
	1.3	Dual Module	4	
	1.4	Modules over Principal Ideal Domains	4	
	1.5	Tensor Products	5	
	1.6	Flat Modules	8	
	1.7	Homology	9	
	1.8	Projective Modules	10	
	1.9	Injective Modules	10	
	1.10	Summary/Comparison of Injective/Projective R-modules	12	
	1.11	Ext and Tor	12	
2	Fiel		13	
	2.1	Review of Rings and Polynomials	13	
	2.2	Algebraic Extensions	14	
	2.3	Algebraic Closure	15	
	2.4	Splitting Fields and Normal Extensions	16	
	2.5	Separable Extensions	17	
	2.6	Finite Fields	18	
	2.7	Inseparable Extensions	18	
	2.8	Galois Theory	19	
	2.9	Computing Galois Groups of Polynomials	21	
	2.10		22	
	2.11	Norm and Trace	23	
		Solvable and Solvable by Radicals	24	

1 Modules over Rings

1.1 Hom Functor

Theorem 1.1. Let A be a ring and let

$$X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow 0$$

be a sequence of A-modules. This sequence is exact if and only if, for every A-module Y, the the induced sequence

$$\operatorname{Hom}_A(X',Y) \xleftarrow{\operatorname{Hom}_A(f,Y)} \operatorname{Hom}_A(X,Y) \xleftarrow{\operatorname{Hom}_A(g,Y)} \operatorname{Hom}_A(X'',Y) \longleftarrow 0$$

is exact.

Theorem 1.2. Let A be a ring and let

$$0 \longrightarrow Y' \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Y''$$

be a sequence of A-modules. This sequence is exact if and only if, for every A-module X, the the induced sequence

$$0 \longrightarrow \operatorname{Hom}_A(X,Y') \xrightarrow{\operatorname{Hom}_A(X,f)} \operatorname{Hom}_A(X,Y) \xrightarrow{\operatorname{Hom}_A(X,g)} \operatorname{Hom}_A(X,Y'')$$

is exact.

1.2 Free Modules

Proposition 1.3 (Universal Property of Free Modules). Let M be a free module over a ring A, with basis $\{x_i\}_{i\in I}$. Let N be an A-module and $\{y_i\}_{i\in I}$ a subset of N. Then there is a unique homomorphism $\phi: M \to N$ so that $\phi(x_i) = y_i$ for all i.

Proposition 1.4 (Mapping a Basis to a Basis is an Isomophism). Let M and N be free modules over a ring A with bases $\{x_i\}_{i\in I}$ and $\{y_i\}_{i\in I}$ respectively. Then the unique homomorphism $\phi: M \to N$ such that $\phi(x_i) = y_i$ is an isomorphism (of A-modules).

Proposition 1.5. Free A-modules with bases of equal cardinality are isomorphic (as A-modules).

Proposition 1.6. Let M be a free module over a ring A with basis $\{x_i\}_{i\in I}$. Then

$$M \cong \bigoplus_{i \in I} Ax_i$$

(Note: $Ax_i = \{ax_i : a \in A\}$.)

Proposition 1.7. Let M be a free module over a ring A with basis $\{x_i\}_{i\in I}$. Let \mathfrak{a} be a two-sided ideal of A. Then $\mathfrak{a}M$ is a submodule of M, and $\mathfrak{a}x_i$ is a submodule of Ax_i . Then $Ax_i/\mathfrak{a}x_i \cong A/\mathfrak{a}$, and

$$M/\mathfrak{a}M \cong \bigoplus_{i \in I} Ax_i/\mathfrak{a}x_i$$

That is, $M/\mathfrak{a}M$ is a free module over A/\mathfrak{a} (free as an A/\mathfrak{a} module).

Proposition 1.8. Let M be a principal module over a commutative ring A, and let $x \in M$ so that M = Ax. Then the map $f : A \to M$ by $a \mapsto ax$ is a surjective A-module homomorphism. Let $\mathfrak{a} = \ker f$. Then $A/\mathfrak{a} \cong M$ as A-modules.

Proposition 1.9. Every free module is projective.

1.3 Dual Module

Proposition 1.10. Let E be a finite rank free module over a commutative ring A. (E has a finite basis.) Then E^{\vee} is also free, with dimension equal to the dimension of E. In particular, given a basis $\{x_i\}_{i=1}^n$ of E, define $f_i: E \to A$ by $f_i(x_i) = \delta_{ij}$. Then $\{f_i\}_{i=1}^n$ is a basis of E^{\vee} .

Proposition 1.11. Let E be a finite rank free A-module. Then the map $E \mapsto E^{\vee\vee}$ defined by $x \mapsto (f \mapsto f(x))$ is an isomorphism (of A-modules).

Proposition 1.12. Let U, V, W be finite rank free modules over a commutative ring A, and let

$$0 \, \longrightarrow \, W \, \stackrel{\lambda}{\longrightarrow} \, V \, \stackrel{\phi}{\longrightarrow} \, U \, \longrightarrow \, 0$$

be an exact sequence of A-modules. Then the induced sequence

$$0 \longrightarrow \operatorname{Hom}_A(U,A) \longrightarrow \operatorname{Hom}_A(V,A) \longrightarrow \operatorname{Hom}_A(W,A) \longrightarrow 0$$

(in other notation)

$$0 \, \longrightarrow \, U^{\vee} \, \longrightarrow \, V^{\vee} \, \longrightarrow \, W^{\vee} \, \longrightarrow \, 0$$

is exact.

1.4 Modules over Principal Ideal Domains

Proposition 1.13. Let R be a principal ideal domain. Let F be a free R-module, and M a submodule of F. Then M is free, and its rank is less than or equal to the rank of F. (Note: It is very important that R is a PID. The result is not true when R is not a PID.)

Proposition 1.14. Let R be a PID, and let E be a finitely generated R-module. Then any submodule of E is finitely generated.

Proposition 1.15. Let R be PID, and let E, E' be R-modules such that E' is free. Let $f: E \to E'$ be a surjective homomorphism. Then there exists a free submodule F of E so that $f|_F: F \to E'$ is an isomorphism, and $E = F \oplus \ker f$.

Proposition 1.16. Let R be a PID, and let E be a finitely generated R-module. Then E/E_{tor} is free, and there is a submodule F of E so that $E=E_{tor} \oplus F$.

Proposition 1.17 (Classification of Finitely Generated Modules over PIDs). Let R be a PID and let E be a finitely generated R-module. Then E is a direct sum

$$E = \bigoplus_{p} E(p)$$

where p ranges over a set of representative of associate classes of primes of R. Each E(p) can be written as a direct sum

$$E(p) = R/(p^{k_1}) \oplus \ldots \oplus R/(p^{k_n})$$

where $1 \leq k_1 \leq \ldots \leq k_n$. The sequence k_1, \ldots, k_n is uniquely determined.

Proposition 1.18. Let R be a PID and let E be a nonzero, finitely generated torsion Rmodule. Then E is isomorphic to a direct sum of non-zero factors

$$E \cong R/(q_1) \oplus \dots R/(q_n)$$

where q_1, \ldots, q_n are non-zero non-units of R and $q_1|q_2|\ldots|q_n$. The sequence of ideals $(q_1), \ldots, (q_n)$ is uniquely determined by the above conditions.

Proposition 1.19 (Elementary Divisors Theorem). Let R be a PID and let F be a free R-module. Let $M \subset F$ be a nonzero finitely generated submodule. Then there exists a basis \mathcal{B} of F and elements $\{e_1, \ldots, e_m\} \subset \mathcal{B}$ and non-zero elements $a_1, \ldots a_m \in R$ so that

- 1. The elements a_1e_1, \ldots, a_me_m form a basis for M over R.
- 2. $a_i | a_{i+1}$ for i = 1, ..., m-1.

The sequence of ideals $(a_1), \ldots, (a_m)$ is uniquely determined by the above.

1.5 Tensor Products

Proposition 1.20 (Generators for Tensor Product). Let R be a commutative ring and let E_1, \ldots, E_n be R-modules. Then

$$\{x_1 \otimes \ldots \otimes x_n : x_i \in E_i\}$$

is a generating set for $\bigotimes_{i=1}^n E_i$. That is, every element of $\bigotimes_{i=1}^n E_i$ can be written as

$$\sum_{i=1}^{n} r_i(x_1 \otimes \ldots \otimes x_n)$$

for $x_i \in E_i$ and $r_i \in R$.

Proposition 1.21 (Linearity of Tensor Product). Let R be a commutative ring and let X, Y be R-modules. Let $x_1, x_2 \in X$ and $y_1, y_2 \in Y$ and $r \in R$. Then

$$(x_1 + x_2) \otimes y_1 = x_1 \otimes y_1 + x_2 \otimes y_1$$

$$x_1 \otimes (y_1 + y_2) = x_1 \otimes y_1 + x_1 \otimes y_2$$

$$r(x_1 \otimes y_1) = (rx_1) \otimes y_1 = x_1 \otimes (ry_1)$$

(These properties generalize in the obvious way to a tensor product of more than two modules.)

Proposition 1.22 (Universal Property of Tensor Product). Let R be a commutative ring and let X, Y, G be R-modules. Then for every multilinear map $\phi: X \times Y \to G$, there is a unique R-module homomorphism $\phi_*: X \otimes_R Y \to G$ making the below diagram commute.

$$X \times Y \xrightarrow{\otimes} X \otimes_R Y$$

$$\downarrow^{\phi_*}$$

$$G$$

That is, $\phi_*(x \otimes y) = \phi(x, y)$. (Note that this generalizes to tensor products of more than two modules.)

Proposition 1.23. Let $m, n \in \mathbb{N}$ be relatively prime. Then viewing $\mathbb{Z}/m\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$ as \mathbb{Z} modules, $\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} = 0$.

Proposition 1.24 (Associativity of Tensor Product). Let E_1, E_2, E_3 be R-modules. There is a unique isomorphism $(E_1 \otimes E_2) \otimes E_3 \to E_1 \otimes (E_2 \otimes E_3)$ such that

$$(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z)$$

Proposition 1.25 (Commutativity of Tensor Product). Let E, F be R-modules. There is a unique isomorphism $E \otimes F \to F \otimes E$ such that $x \otimes y \mapsto y \otimes x$.

Proposition 1.26 (Functoriality of Tensor Product). Let $f_i: E'_i \to E_i$ for i = 1, ..., n be a family of R-module homomorphisms. Then we get a map $\prod f_i: \prod E'_i \to \prod E_i$. Then the composition $\otimes \circ \prod f_i: \prod E'_i \to \bigotimes E_i$ induces a map $T: \bigotimes E'_i \to \bigotimes E_i$ by the universal property, and the following diagram commutes.

$$E'_{1} \times \ldots \times E'_{n} \xrightarrow{\otimes} E'_{1} \otimes \ldots \otimes E'_{n}$$

$$\downarrow \Pi^{f_{i}} \qquad \downarrow^{T}$$

$$E_{1} \times \ldots \times E_{n} \xrightarrow{\otimes} E_{1} \otimes \ldots \otimes E_{n}$$

The map T is sometimes notated as $T = f_1 \otimes \ldots \otimes f_n$.

Proposition 1.27. Let R be a commutative ring and E, F, G be R-modules. Then $L(E, F; G) \cong L(E \otimes F, G)$. This isomorphism takes a bilinear map $f: E \times F \to G$ to the induced map $f_*: E \otimes F \to G$ where $f_*(e \otimes f) = f(e, f)$.

Proposition 1.28. Let R be a commutative ring and E, F, G be R-modules. Then $L(E, L(F, G)) \cong L(E, F; G)$. For $\phi : E \to L(F, G)$, this isomorphism is given by $\phi \mapsto f_{\phi}$ wher $f_{\phi}(x, y) = \phi(x)(y)$.

Proposition 1.29 (Tensor Product Distributes over Direct Sum). Let $F, \{E_i\}_{i \in I}$ be Rmodules. Then

$$F \otimes \bigoplus_{i \in I} E_i \cong \bigoplus_{i \in I} (F \otimes E_i)$$

Proposition 1.30. Let E be a free R-module with basis $\{v_i\}_{i\in I}$. Let F be an R-module. Then every element of $F\otimes E$ has a unique expression of the form

$$\sum_{i\in I} y_i \otimes v_i$$

where $y_i \in F$ and only finitely many terms are nonzero.

Proposition 1.31. Let E, F be free R-modules with respective bases $\{v_i\}_{i \in I}$ and $\{w_j\}_{j \in J}$. Then $E \otimes F$ is free with basis $\{v_i \otimes w_J\}$. As a result,

$$\dim(E \times F) = (\dim E)(\dim F)$$

In particular, in the case where F = R, the tensor product $E \otimes R$ is isomorphic to E via the correspondence $x \mapsto x \otimes 1$.

Proposition 1.32. Let E, F be finite dimensional free R-modules. Then there is a unique isomorphism

$$\operatorname{End}_R(E) \otimes \operatorname{End}_R(F) \to \operatorname{End}_R(E \otimes F)$$

so that

$$f \otimes g \mapsto T(f,g)$$

Proposition 1.33 (Tensor Functor is Right Exact). Let

$$0 \longrightarrow E' \stackrel{\phi}{\longrightarrow} E \stackrel{\psi}{\longrightarrow} E'' \longrightarrow 0$$

be an exact sequence of R-modules, and fix an R-module F. Then the sequence

$$F \otimes E' \longrightarrow F \otimes E \longrightarrow F \otimes E'' \longrightarrow 0$$

is exact. (When left exactness holds, F is called a **flat** module.)

Proposition 1.34. Let R be a commutative ring with an ideal \mathfrak{a} . Let E be an R-module. Then the map $(R/\mathfrak{a}) \times E \to E/\mathfrak{a}E$ induced by

$$(a, x) \mapsto ax \pmod{\mathfrak{a}E}$$

(where $a \in R$ and $x \in E$) is bilinear and induces an isomorphism

$$(R/\mathfrak{a}) \otimes E \cong E/\mathfrak{a}E$$

Proposition 1.35. Let $m, n \in \mathbb{Z}$ and let $d = \gcd(m, n)$. Then

$$(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}$$

Proposition 1.36. Let A be a nonzero finitely generated abelian group. Then $A \otimes_{\mathbb{Z}} A \neq 0$.

Proposition 1.37. $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$. (This is an example of a nonzero infinitely generated abelian group whose tensor product with itself is zero.)

1.6 Flat Modules

Proposition 1.38. Let F be an R module. The following are equivalent.

- 1. The functor $E \mapsto E \otimes F$ is exact.
- 2. The functor $E \mapsto E \otimes F$ is left exact.
- 3. For every injective R-module homomorphism $E' \to E$, the induced map $E' \otimes F \to E \otimes F$ is injective.

(E, E' are R-modules and tensors are over R.)

Proposition 1.39. Projective modules are flat.

Proposition 1.40. Let R be a commutative ring. Then R is flat as an R-module.

Proposition 1.41. Let R be a commutative ring and let $\{F_i\}_{i\in I}$ be a collection of R-modules. Then $\bigoplus_{i\in I} F_i$ is flat if and only if each F_i is flat.

Proposition 1.42. Let R be a principal ideal domain. Then an R-module F is flat if and only if it is torsion free.

Proposition 1.43. Let R be an integral domain, and let M be an R-module with torsion. Then M is not flat.

Proposition 1.44. Let R be a commutative ring and let F be an R-module. The following are equivalent:

- 1. F is flat.
- 2. $\operatorname{Tor}_{1}^{R}(F, M) = 0$ for every R-module M.
- 3. $\operatorname{Tor}_{i}^{R}(F, M) = 0$ for all $i \in \mathbb{N}$ and every R-module M.
- 4. $\operatorname{Tor}_{1}^{R}(F, R/I) = 0$ for all ideals $I \subset R$.

Proposition 1.45. Let F be a flat R-module and suppose that $0 \to N \to M \to F \to 0$ is an exact sequence of R-modules. Then for any R-module E, the sequence $0 \to N \otimes E \to M \otimes E \to F \otimes E \to 0$ is exact.

Proposition 1.46. Let R be a commutative ring, and let F be an R-module. Then F is flat if and only if for every ideal $I \subset R$ the natural map $I \otimes F \to IF$ given by $x \otimes f \to xf$ is an isomorphism.

Proposition 1.47. Let R be a commutative ring, and let F be an R-module. Then F is flat if and only if for every ideal $I \subset R$, the sequence $0 \to I \otimes F \to R \otimes F \to (R/I) \otimes F \to 0$ is exact.

Guide to relationships between free, projective, and flat:

free \implies projective \implies flat

Over \mathbb{Z} , projective \iff free

Over a PID, flat \iff torsion free

1.7 Homology

Proposition 1.48. Let R be a ring and let

$$\dots \xrightarrow{d^{i-3}} E^{i-2} \xrightarrow{d^{i-2}} E^{i-1} \xrightarrow{d^{i-1}} E^i \xrightarrow{d^i} E^{i+1} \xrightarrow{d^{i+1}} \dots$$

be an exact sequence of R modules. Then for each i we have an exact sequence

$$0 \longrightarrow \ker d^i \longrightarrow E^i \stackrel{d^i}{\longrightarrow} \operatorname{im} d^i \longrightarrow 0$$

Proposition 1.49. Let R be a commutative ring and let M be an R-module. Then there is a free resolution of M.

Proposition 1.50. Let R be a ring and let E', E, E'' be chain complexes of R-modules, forming an exact sequence of morphisms of degree zero,

$$0 \longrightarrow E' \stackrel{f}{\longrightarrow} E \stackrel{g}{\longrightarrow} E'' \longrightarrow 0$$

We can write this out fully as

$$d'_{i-2} \downarrow \qquad d_{i-2} \downarrow \qquad d''_{i-2} \downarrow$$

$$0 \longrightarrow E'_{i-1} \xrightarrow{f_{i-1}} E_{i-1} \xrightarrow{g_{i-1}} E''_{i-1} \longrightarrow 0$$

$$d'_{i-1} \downarrow \qquad d_{i-1} \downarrow \qquad d''_{i-1} \downarrow$$

$$0 \longrightarrow E'_{i} \xrightarrow{f_{i}} E_{i} \xrightarrow{g_{i}} E''_{i} \longrightarrow 0$$

$$d'_{i} \downarrow \qquad d_{i} \downarrow \qquad d''_{i} \downarrow$$

$$0 \longrightarrow E'_{i+1} \xrightarrow{f_{i+1}} E_{i+1} \xrightarrow{g_{i+1}} E_{i+1} \longrightarrow 0$$

$$d'_{i+1} \downarrow \qquad d_{i+1} \downarrow \qquad d''_{i+1} \downarrow$$

$$0 \longrightarrow E'_{i+2} \xrightarrow{f_{i+2}} E_{i+2} \xrightarrow{g_{i+2}} E''_{i+2} \longrightarrow 0$$

$$d'_{i+2} \downarrow \qquad d_{i+2} \downarrow \qquad d''_{i+2} \downarrow$$

Then there exists a morphism $\delta: H(E'') \to H(E')$ of degree 1, that is, a family of morphisms $\delta_i: H_i(E'') \to H_{i+1}(E')$, fitting into the following long exact sequence:

$$\dots \xrightarrow{\delta_{i-1}} H_i(E') \xrightarrow{H_i(f)} H_i(E) \xrightarrow{H_i(g)} H_i(E'') \xrightarrow{\delta_i}$$

$$\xrightarrow{\delta_i} H_{i+1}(E') \xrightarrow{H_{i+1}(f)} H_{i+1}(E) \xrightarrow{H_{i+1}(g)} H_{i+1}(E'') \xrightarrow{\delta_{i+1}} \dots$$

Proposition 1.51. Let $f, g: E \to E'$ be homotopic morphisms of complexes. Then f, g induce the same homomorphism on homology, that is, $H(f_n) = H(g_n): H_n(E) \to H_n(E')$.

1.8 Projective Modules

Theorem 1.52. Let A be a ring and let P be an A-module. The following are equivalent. (1) Given a homomorphism $f: P \to M''$ and a surjective homomorphism $g: M \to M''$, there exists a homomorphism $h: P \to M$ so that $g \circ h = f$. That is, given a commutative diagram as below, the dotted line can be filled in.

$$\begin{array}{ccc}
 & P \\
\downarrow f \\
M & \xrightarrow{g} & M'' & \longrightarrow 0
\end{array}$$

- (2) Every exact sequence $0 \to M' \to M'' \to P \to 0$ splits.
- (3) There exists a module M so that $P \oplus M$ is free.
- (4) The functor $M \mapsto \operatorname{Hom}_A(P, M)$ is exact.

Proposition 1.53. Let R be a ring and P be an R-module. The following are equivalent.

- 1. P is projective.
- 2. $\operatorname{Ext}_R^n(P, M) = 0$ for all R-modules M and $n \geq 1$.
- 3. $\operatorname{Ext}_{R}^{1}(P, M) = 0$ for all R-modules M.

Proposition 1.54. Every free module is projective.

Proposition 1.55. Over a PID, every projective module is free. (Thus over a PID, free is equivalent to projective.)

Proposition 1.56. Every projective module is flat.

1.9 Injective Modules

Proposition 1.57. Fix a ring R, and let I be an R-module. The following are equivalent. (1) Given an exact sequence $0 \to M' \to M$ of R-modules and a homomorphism $f: M' \to I$, there exists h so that the following diagram commutes.

$$0 \longrightarrow M' \longrightarrow M$$

$$\downarrow_f \\ h$$

- (2) The functor $M \mapsto \operatorname{Hom}_R(M, I)$ is exact.
- (3) Every exact sequence $0 \to I \to M \to M'' \to 0$ splits.

Proposition 1.58. Let R be a ring and I be an R-module. The following are equivalent.

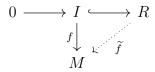
- 1. I is injective.
- 2. $\operatorname{Ext}_R^n(M,I) = 0$ for all R-modules M and $n \ge 1$.

3. $\operatorname{Ext}^1_R(M,I) = 0$ for all R-modules M.

Proposition 1.59. A product of injective modules is injective. Conversely, if a product of modules is injective, then each of the modules is injective.

Proposition 1.60. For \mathbb{Z} modules, injective is equivalent to divisible.

Proposition 1.61 (Baer's Criterion). Let R be a ring, and let M be an R-module. Then M is injective if and only if for every ideal $I \subset R$ and every R-linear map $f: I \to M$, we can find $\widetilde{f}: R \to M$ making the following diagram commute.



1.10 Summary/Comparison of Injective/Projective R-modules

Projective	Injective
Submodules need NOT be projective	Submodules and quotient
free ⇒ projective over a PID, free ⇔ projective projective ⇒ flat	modules need NOT be injective
projective , nec	for \mathbb{Z} -modules, injective \iff divisible for any ring, injective \implies divisible
P is projective and $n \ge 1$ $\implies \forall M \operatorname{Ext}_{R}^{n}(P, M) = 0$	I is injective and $n \ge 1$ $\implies \forall M \operatorname{Ext}_R^n(M, I) = 0$
$\forall M \ \operatorname{Ext}^1_R(P, M) = 0$ $\implies P \text{ is projective}$	$\forall M \ \operatorname{Ext}^1_R(M, I) = 0$ $\implies I \ \text{is injective}$
P is projective \iff $\forall M, \forall n \geq 1 \operatorname{Ext}_{R}^{n}(P, M) = 0$	I is injective \iff $\forall M, \forall n \geq 1 \ \operatorname{Ext}^n_R(M, I) = 0$
P is projective \Longrightarrow $M \mapsto \operatorname{Hom}_R(P, M)$ is exact	I is injective \Longrightarrow $M \mapsto \operatorname{Hom}_R(M, I)$ is exact
$0 \to M' \to M \to P \to 0$ aways splits	$0 \to I \to M \to M'' \to 0$ always splits
P is projective \iff $\exists M \text{ such that } P \oplus M \text{ is free}$	Every module is a submodule of an injective module
P_1, P_2 are projective \iff $P_1 \oplus P_2$ is projective	I_1, I_2 are injective \iff $I_1 \oplus I_2$ is injective
If $\phi: M \to M''$ is surjective and $f: P \to M''$, then $\exists \widetilde{f}: P \to M$ such that $\phi \widetilde{f} = f$	If $\psi: M' \to M$ is injective and $f: M' \to I$, then $\exists \tilde{f}: M \to I$ such that $\tilde{f}\psi = f$
$M \xrightarrow{\widetilde{f}} M'' \longrightarrow 0$	$0 \longrightarrow M' \xrightarrow{\psi} M$ $f \downarrow \qquad \qquad \widetilde{f}$ I

1.11 Ext and Tor

Proposition 1.62 (Computation of Tor). Let R be a ring, and let A, B be R-modules. Let

$$\ldots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$$

be a projective resolution of A. After we apply the functor $-\otimes_R B$ and drop the term involving A, we get an induced chain complex

$$\dots \longrightarrow P_2 \otimes_R B \longrightarrow P_1 \otimes_R B \longrightarrow P_0 \otimes_R B \longrightarrow 0$$

Then the homology of this sequence is $\operatorname{Tor}_n^R(A, B)$. (The n-th homology occurs at the tensor involving P_n .)

Proposition 1.63 (Computation of Ext). Let R be a ring, and let A, B be R-modules. Let

$$\dots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$$

be a projective resolution of A. After we apply the functor $\operatorname{Hom}_R(-,B)$ and drop the term involving A, we get an induced chain complex

$$0 \longrightarrow \operatorname{Hom}_R(P_0, B) \longrightarrow \operatorname{Hom}_R(P_1, B) \longrightarrow \operatorname{Hom}_R(P_2, B) \longrightarrow \dots$$

(Note: The direction is reverse because $\operatorname{Hom}_R(-,B)$ is contravariant.) Then the homology of this sequence is $\operatorname{Ext}_n^R(A,B)$. (The n-th homology occurs at the Hom involving P_n .)

Proposition 1.64 (Symmetry of Tor).

$$\operatorname{Tor}_n^R(A,B) \cong \operatorname{Tor}_n^R(B,A)$$

Proposition 1.65 ("Linearity" of Ext with Respect to Products).

$$\operatorname{Ext}_{R}^{n}\left(\bigoplus_{\alpha} A_{\alpha}, B\right) \cong \prod_{\alpha} \operatorname{Ext}_{R}^{n}(A_{\alpha}, B)$$
$$\operatorname{Ext}_{R}^{n}\left(\left(A, \prod B_{\beta}\right) \cong \prod \operatorname{Ext}_{R}^{n}(A, B_{\beta})$$

2 Field Theory

2.1 Review of Rings and Polynomials

Proposition 2.1. Let R be an integral domain. Then R[x] is an integral domain.

Proposition 2.2. Let k be a field. Then the polynomial ring k[x] is a principal ideal domain.

Proposition 2.3. Let A be a commutative ring and $I \subset A$ an ideal. Then A/I is a field if and only if I is maximal.

Proposition 2.4. Let A be a commutative ring and $I \subset A$ an ideal. Then A/I is an integral domain if and only if I is prime.

Proposition 2.5. Let A be an integral domain. If $a \in A$ such that $a \neq 0$ and the principal ideal $\langle a \rangle$ is prime, then a is irreducible.

Proposition 2.6. Let A be a unique factorization domain. Then $p \in A$ is irreducible if and only if $\langle p \rangle$ is a prime ideal.

Proposition 2.7 (Eisenstein's Criterion). Let R be a unique factorization domain, and let K be the quotient field of R. Let $f(x) = a_n x^n + \ldots + a_0 \in R[x]$ with degree $n \ge 1$. Let p be a prime in R such that

$$p|a_0, a_1, \dots a_{n-1}$$
 $p \nmid a_n$ $p^2 \nmid a_0$

Then f(x) is irreducible in K[x].

Proposition 2.8 (Integral Root Test). Let R be a unique factorization domain with quotient field K. Let $f(x) = a_n x^n + \ldots + a_0 \in R[x]$. Let $\alpha \in K$ be a root of f, written as $\alpha = b/d$ where $b, d \in R$ and b, d are relatively prime. Then $b|a_0$ and $d|a_n$. In particular, if f is monic, then $\alpha = b$ so $\alpha \in R$ and $\alpha|a_0$. (Note: The most common application of this is when $R = \mathbb{Z}$ and $K = \mathbb{Q}$.)

2.2 Algebraic Extensions

Proposition 2.9. Every finite field extension is algebraic. That is, if E is a finite field extension of F, then every element of E is algebraic over F. (Note: Converse is false.)

Proposition 2.10. Let G, F, E be fields with $G \subset F \subset E$. Then

$$[E:G] = [E:F][F:G]$$

In particular, if $\{x_i\}_{i\in I}$ is a basis for F over G and $\{y_j\}_{j\in J}$ is a basis for E over F, then $\{x_iy_j\}_{(i,j)\in I\times J}$ is a basis for E over G.

Proposition 2.11. Let G, F, E be fields with $G \subset F \subset E$. Then E is a finite extension of G if and only if E is finite over F and F is finite over G.

Proposition 2.12. Let $k \subset E$ be a field extension and let α be algebraic over k. Then $k(\alpha) = k[\alpha]$ and $k(\alpha)$ is finite over k. Furthermore,

$$[k(\alpha):k] = \deg \operatorname{Irr}(\alpha,k)$$

That is, the degree of the field extension is equal to the degree of the minimal irreducible polynomial.

Proposition 2.13. Let $k \subset E$ be a finite field extension. Then E is finitely generated over k

Proposition 2.14. Let $k \subset E$ be a field extension, and suppose $E = k(\alpha_1, ..., \alpha_n)$. Let F be a field extension of E, so that $E, F \subset L$. Then $EF = F(\alpha_1, ..., \alpha_n)$.

Proposition 2.15. Let $E = k(\alpha_1, ..., \alpha_n)$ be a finitely generated extension of a field k, and suppose that α_i is algebraic over k for each i. Then E is a finite and algebraic extension of k.

Proposition 2.16. The class of algebraic extensions is distinguished.

Proposition 2.17. The class of finite extensions is distinguished.

Proposition 2.18. The class of finitely generated extensions is distinguished. (Not proven in this class,)

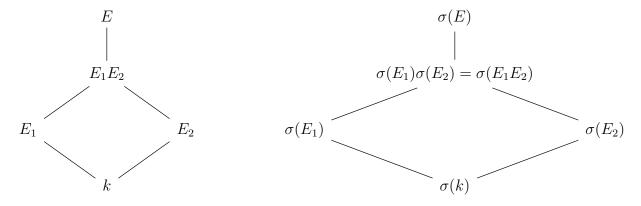
2.3 Algebraic Closure

Proposition 2.19. Let k be a field, and $k \subset E$ be an algebraic extension. Let $\sigma : E \to E$ be an embedding of E into itself over k. (That is, $\sigma|_k = \operatorname{Id}_k$.) Then $\sigma : E \to E$ is an automorphism (that is, it is not merely injective, but also surjective.)

Proposition 2.20. Let k, E_1, E_2, E, L be fields with $k \subset E_1, E_2 \subset E$, and let $\sigma : E \to L$ be an embedding. Then

$$\sigma(E_1 E_2) = \sigma(E_1) \sigma(E_2)$$

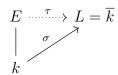
(The compositum of the images is the image of the compositum.)



Proposition 2.21. Let k be a field and $f \in k[x]$ of degree ≥ 1 . Then there exists an extension E of k in which f has a root. (In particular, if f is irreducible we can choose the field k[x]/(f).)

Proposition 2.22. Let k be a field. Then there exists an algebraically closed field \overline{k} containing k as a subfield. Furthermore, the extension $k \subset \overline{k}$ is algebraic. (As will be shown later, this field is unique up to isomorphism.)

Proposition 2.23. Let k be a field and $k \in E$ an algebraic extension, and $\sigma : k \to L$ an embedding of k into an algebraically closed field L. Then there exists an extension $\tau : E \to L$ so that $\tau|_k = \sigma$. If E is algebraically closed and L is algebraic over $\sigma(k)$, then τ is an isomorphism.



Proposition 2.24. Let k be a field and E, E' be algebraic extensions of k, with E, E' algebraically closed. Then there is an isomorphism $\tau : E \to E'$ such that $\tau|_k = \mathrm{Id}_k$.

$$E \xrightarrow{\tau} E'$$

$$\downarrow \qquad \qquad \downarrow$$

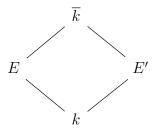
$$k \xrightarrow{\operatorname{Id}_K} k$$

Proposition 2.25. If k is an infinite field, then any algebraic extension of k has the same cardinality of k.

Proposition 2.26. If k is a finite field, then the algebraic closure of k is countably infinite. (No finite field is algebraically closed.)

2.4 Splitting Fields and Normal Extensions

Proposition 2.27. Let E, E' be splitting fields of $f \in k[x]$. Then there is an isomorphism $\tau : E \to E'$ such that $\tau|_k = k$. If $k \subset E \subset \overline{k}$, then any embedding $\phi : E' \to \overline{k}$ satisfying $\phi|_k = \mathrm{Id}_k$ is an isomorphism $\phi : E' \to E$.



Proposition 2.28. Let k be a field with algebraic closure \overline{k} . If we have a tower of algebraic extensions $k \subset K \subset \overline{k}$, then the following are equivalent:

- 1. K is the splitting field of a family of polynomials in k[x].
- 2. Every embedding $\sigma: K \to \overline{k}$ is actually an isomorphism $\sigma: K \to K$. (That is, embeddings of splitting fields into the algebraic closure always map into the splitting field.)
- 3. Every irreducible polynomial in k[x] that has a root in K splits into linear factors in K.

(An extension satisfying the above is called normal.)

Proposition 2.29. Normal extensions remain normal under lifting. That is, if $k \subset E \subset K$ and K is normal over k, then K is normal over E.

If K_1, K_2 are normal over k and $K_1, K_2 \subset L$, then the compositum K_1K_2 is normal over k, as is $K_1 \cap K_2$.

2.5 Separable Extensions

Proposition 2.30. Let F, E, L be fields with L algebraically closed and $F \subset E$ and let $\sigma: F \to L$ be an embedding. Define

$$S_{\sigma} = \{ \tau : E \to L : \tau|_F = \sigma \}$$

That is, S_{σ} is the set of possible extensions of σ to E. Then the size of S_{σ} is independent of σ .

Proposition 2.31. Let $k \subset F \subset E$ be a tower of fields. Then

$$[E:k]_s = [E:F]_s[F:k]_s$$

Furthermore, if [E:k] is finite, then $[E:k]_s$ is finite and

$$[E:k]_s \leq [E:k]$$

(Later we can show that $[E:k]_s$ divides [E:k] whenever [E:k] is finite.)

Proposition 2.32. Let $k \subset F \subset E$ be a tower of fields with [E:k] finite. Then

$$[E:k]_s = [E:k] \iff [E:F]_s = [E:F] \text{ and } [F:k]_s = [F:k]$$

Proposition 2.33. Let $k \subset F \subset K$ be a tower of fields and let $\alpha \in K$ be separable over k. Then α is separable over F.

Proposition 2.34. Let $k \subset E$ be a finite extension. Then E is separable over k if and only each $\alpha \in E$ is separable over k.

Proposition 2.35. Let $k \subset E$ be an algebraic extension, generated by $\{\alpha_i\}_{i \in I}$. If each α_i is separable over k, then E is separable over k.

Proposition 2.36. Separable extensions form a distinguished class.

Proposition 2.37 (Primitive Element Theorem). Let $k \subset E$ be a finite extension. The following are equivalent:

- 1. There exists $\alpha \in E$ so that $E = k(\alpha)$.
- 2. There are only finitely many fields F such that $k \subset F \subset E$.

If E is separable over k, then there exists $\alpha \in E$ such that $E = k(\alpha)$.

2.6 Finite Fields

Proposition 2.38. If a field has q (finite) elements, then $q = p^n$ where p is a prime and $n \in \mathbb{N}$.

Proposition 2.39. For each prime p and each $n \in \mathbb{N}$, there exists a unique field F_{p^n} of order p^n . It is a subfield of the algebraic closure of $F_p = \mathbb{Z}/p\mathbb{Z}$. It is the splitting field of the polynomial

$$f(x) = x^{p^n} - x$$

over F_p , and the elements of F_{p^n} are the roots of f. Every finite field is isomorphic to exactly one F_{p^n} .

Proposition 2.40. Let F_q be a finite field (with q elements). Let $n \in \mathbb{N}$. In a given algebraic closure \overline{F}_q , there exists a unique extension of F_q of degree n, which is F_{q^n} .

Proposition 2.41. The multiplicative group of a finite field is cyclic.

Proposition 2.42. Let F_q be the finite field with $q = p^n$ elements. The group of automorphisms of F_q is cyclic of size n, and is generated by the Frobenius map $x \mapsto x^p$.

Proposition 2.43. Let p be prime and let $m, n \in \mathbb{N}$. In any algebraic closure of F_p , the subfield F_{p^n} is contained in F_{p^m} if and only if n divides m. When n divides m, F_{p^m} is a normal and separable extension of F_{p^n} , and the group of automorphisms of F_{p^m} over F_{p^n} is cyclic of order $\frac{m}{n}$, generated by ϕ^n . (ϕ is the Frobenius map.)

2.7 Inseparable Extensions

Proposition 2.44. Let k be a field with algebraic closure \overline{k} , and let $\alpha \in \overline{k}$. Let $f = \operatorname{Irr}(\alpha, k)$. If char k = 0, then all roots of f have multiplicity one (f is separable). If char k = p for a prime p, then there exists $n \in \mathbb{N}$ so that every root of f has multiplicity p^n , and

$$[k(\alpha):k] = p^n[k(\alpha):k]_s$$

and α^{p^n} is separable over k.

Proposition 2.45. Let $k \subset E$ be a finite extension. Then the separable degree $[E:k]_s$ divides the degree [E:k]. We have

$$\operatorname{char} k = 0 \implies \frac{[E:k]}{[E:k]_s} = 1$$

$$\operatorname{char} k = p \implies \frac{[E:k]}{[E:k]_s} = p^n \quad \text{for some } n \in \mathbb{N}$$

That is, every extension of a field of characteristic zero is separable.

2.8 Galois Theory

Proposition 2.46 (The Galois Correspondence). Let K be a finite Galois extension of k, with Galois group G. We define a map from the set of subgroups H of G to the set of subfields of K containing k by $H \mapsto K^H$ (where K^H is the fixed field of H). This is a bijection. Furthermore, K^H is Galois over k if and only if H is normal in G. If H is normal in G, then the map $G \to H$ by $\sigma \mapsto \sigma|_{K^H}$ induces an isomorphism of G/H to $Gal(K^H/k)$.

Proposition 2.47. Let K be a Galois extension of k with Galois group G. Then $k = K^G$. If F is an intermediate field satisfying $k \subset F \subset K$, then K is Galois over F. Furthermore, the map

$$F \mapsto \operatorname{Gal}(K/F)$$

from the set of intermediate fields to the set of subgroups of G is injective.

Proposition 2.48. Let $k \subset K$ be a Galois extension with Galois group G. Let F, F' be intermediate fields $(k \subset F, F' \subset k)$ and let H, H' be the subgroups of G belonging to F, F' respectively $(H = \operatorname{Gal}(K/F), H' = \operatorname{Gal}(K/F'))$. Then

- 1. $H \cap H'$ belongs to FF' (that is, $H \cap H' = Gal(K/FF')$).
- 2. The fixed field of the smallest subgroup of G containing H and H' is $F \cap F'$.
- 3. $F \subset F'$ if and only if $H' \subset H$ (the correspondence is inclusion reversing).

Proposition 2.49. Let E be a finite separable extension of k. Let K be the smallest normal extension of k containing E. Then K is finite Galois over k. There are only a finite number of intermediate fields F satisfying $k \subset F \subset E$.

Proposition 2.50. Let E be a algebraic separable extension of k, and suppose there exists $n \in \mathbb{N}$ so that every element of E as degree $\leq n$ over k. Then E is finite over k and $[E:k] \leq n$.

Proposition 2.51 (Artin's Theorem). Let K be a field and let G be a finite group of automorphisms of K with |G| = n. Let $k = K^G$ be the fixed field. Then K is a finite Galois extension of k, and Gal(K/k) = G. Furthermore, [K:k] = n. That is, if K/k is a finite Galois extension, then [K:k] is the size of the Galois group Gal(K/k).

Proposition 2.52. Let L/K be a finite Galois extension. Then the order of the Galois group of L over K is equal to the degree of the field extension [L:K].

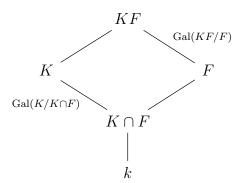
Proposition 2.53. Let K be a finite Galois extension of k and let G = Gal(K/k). Then every subgroup H of G belongs to some subfield F so that $k \subset F \subset K$ (that is, H = Gal(K/F)).

Proposition 2.54. Let K be a Galois extension of k with Gal(K/k) = G. Let F be a subfield $k \subset F \subset K$, and let H = Gal(K/F). Then F is normal over k if and only if H is normal in G. If F is normal over k, then the restriction map $Gal(K/k) \to Gal(F/k)$ given by $\sigma \mapsto \sigma|_F$ is a homomorphism with kernel H. Thus

$$\operatorname{Gal}(F/k) \cong \frac{\operatorname{Gal}(K/k)}{\operatorname{Gal}(K/F)}$$

Proposition 2.55. Let K/k be an abelian Galois extension. If F is an intermediate field $k \subset F \subset K$, then F is an abelian Galois extension of k. This same proposition holds true replacing "abelian" with "cyclic." (Normally, F/k may not even by Galois, but the corresponding subgroup is normal because the Galois group is abelian in this case.)

Proposition 2.56 (Lifting of Galois Extensions). Let $k \subset K$ be a Galois extension and let $k \subset F$ be any extension, and suppose that K, F are contained in some field. Then $k \subset KF$ is Galois, and $K \cap F \subset K$ is Galois. Furthermore, the map $\operatorname{Gal}(KF/F) \to \operatorname{Gal}(K/K \cap F)$ given by $\sigma \mapsto \sigma|_K$ is an isomorphism.

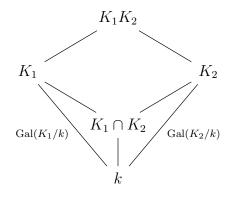


Proposition 2.57. Let $k \subset K$ be a finite Galois extension. Let F be any extension of k. Then [KF:F] divides [K:k].

Proposition 2.58. Let K_1, K_2 be Galois extensions of k, where K_1, K_2 are contained in some field. Then the compositum K_1K_2 is Galois over k. Furthermore, the map

$$\operatorname{Gal}(K_1K_2/k) \to \operatorname{Gal}(K_1/k) \times \operatorname{Gal}(K_2/k) \qquad \sigma \mapsto (\sigma|_{K_1}, \sigma|_{K_2})$$

is injective. If $K_1 \cap K_2 = k$, then it is an isomorphism.



Proposition 2.59. Let K/k and L/k be abelian extensions of k, and K, L contained in some field. Then KL/k is an abelian extension.

Proposition 2.60. If K/k is an abelian extension, and E/k is any extension, then KE/k is an abelian extension.

Proposition 2.61. If K/k is an abelian extension, and $k \subset E \subset K$, then E/k is abelian and K/E is abelian.

2.9 Computing Galois Groups of Polynomials

Proposition 2.62. Let $f \in k[x]$ be a separable polynomial of degree n with Galois group G. Then the element of G permute the roots of f, so G embeds into S_n .

Proposition 2.63 (Classification of Quadratic Extensions). Let k be a field of characteristic $\neq 2$. Let $f(x) = x^2 - a \in k[x]$, where a is not a square in k. Then f is separable and irreducible, and if α is a root in \overline{k} , then $k(\alpha)$ is the splitting field of f. Furthermore, the Galois group of f is cyclic of order 2.

Proposition 2.64. Let K/k be an extension of degree 2, with char $k \neq 2$. Then there exists $a \in k$ such that $K = k(\alpha)$ and $\alpha^2 = a$.

Proposition 2.65. Let $f \in k[x]$ be a cubic. Then f can be written in the form $f(x) = x^3 + ax + b$ for $a, b \in k$. Concretely, given a general cubic

$$ax^3 + bx^2 + cx + d$$

Make the substitution $x = y - \frac{b}{3a}$ and get

$$y^{3} + \left(\frac{3ac - b^{2}}{3a^{2}}\right)y + \left(\frac{2b^{3} - 9abc + 27a^{2}d}{27a^{3}}\right)$$

Note that since we just performed a linear substitution, the roots of the new cubic are just a linear shift of the roots of the original cubic. In particular, the Galois group remains the same.

Proposition 2.66 (Classification of Cubic Extensions). Let k be a field of characteristic $\neq 2, 3$, and let $f(x) = x^3 + ax + b \in k[x]$. Note that f is always separable, and that f is irreducible if and only if it has no root in k.

Now assume f is irreducible, and let G be the Galois group. Then $G \cong S_3$ if and only if $\Delta(f)$ is a NOT square in k, and $G \cong \mathbb{Z}/3\mathbb{Z}$ otherwise (i.e. when the discriminant IS a square).

Proposition 2.67. Let $f(x) = \mathbb{Q}[x]$ be irreducible with deg f = p for a prime p. If f has precisely two nonreal roots in \mathbb{C} , then the Galois group of f is S_p .

Proposition 2.68. Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial, and let p be a prime. Let $\overline{f} \in \mathbb{Z}/p\mathbb{Z}[x]$ be the polynomial obtained by reducing the coefficients mod p. If \overline{f} is separable, then there is a bijection between the roots of f and \overline{f} , and an embedding of the Galois group of \overline{f} into the Galois group of f.

In particular, if \overline{f} factors as a product of irreducible polynomials of degree n_1, \ldots, n_k , then the Galois group of f contains an element that can be written as a product of disjoint cycles of length n_1, \ldots, n_k .

2.10 Roots of Unity

Proposition 2.69. Let k be a field, and let n, m be relatively prime integers, not divisible by char k. Let μ_n and μ_m be the cyclic groups of nth and mth roots of unity respectively. Then

$$\mu_{mn} \cong \mu_n \times \mu_m$$

Proposition 2.70. Let k be a field, and $n \in \mathbb{N}$ not divisible by char k. Let ζ_n be a primitive nth root of unity in \overline{k} . Then $k(\zeta_n)/k$ is a cyclic Galois extension, of order d where d|n.

Proposition 2.71. Let ζ be a primitive nth root of unity over \mathbb{Q} . Then

$$[\mathbb{Q}(\zeta):\mathbb{Q}] = \phi(n)$$

where ϕ is the Euler totient function. Furthermore, we have an isomorphism

$$\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^*$$

Proposition 2.72. Let $n, m \in \mathbb{N}$ be relatively prime. Let ζ_n, ζ_m be primitive nth and mth roots of unity respectively. Then

$$\mathbb{Q}(\zeta_n) \cap \mathbb{Q}(\zeta_m) = \mathbb{Q}$$

Proposition 2.73. Let ζ_p be a primitive pth root of unity, and define

$$S = \sum_{v=1}^{p-1} \left(\frac{v}{p}\right) \zeta_p^v$$

Then

$$S^2 = \left(\frac{-1}{p}\right)p$$

Consequently, every quadratic extension of \mathbb{Q} is contained in a cyclotomic extension.

Proposition 2.74 (Artin). Let G be a monoid and k a field. Let $\chi_1, \ldots, \chi_n : G \to k^{\times}$ be distinct characters. Then they are linearly independent (over k).

Proposition 2.75. Let k be a field and $\alpha_1, \ldots, \alpha_n$ be distinct elements of k^{\times} . If

$$\sum_{i} a_i \alpha_i^m = 0$$

for all $m \in \mathbb{N}$, then $a_i = 0$ for all i. (Note: To prove this, apply the previous theorem to the characters $m \mapsto \alpha_i^m$ from $\mathbb{Z}_{>0}$ to k^{\times} .)

2.11 Norm and Trace

Proposition 2.76 (Properties of Norm). Let E/k be a finite extension. Then the norm $N_{E/k}$ is a multiplicative homomorphism $E^{\times} \to k^{\times}$. If $k \subset F \subset E$ is a tower of finite extensions, then

$$N_k^E = N_k^F \circ N_F^E$$

If $E = k(\alpha)$ and $f(x) = Irr(\alpha, k) = x^n + a_{n-1}x^{n-1} + ... + a_0$, then

$$N_k^{k(\alpha)} = (-1)^n a_0$$

Proposition 2.77 (Properties of Trace). Let E/k be a finite extension. Then the trace $\operatorname{Tr}_{E/k}$ is an additive homomorphism $E \to k$. If $k \subset F \subset E$ is a tower of finite extensions, then

$$\operatorname{Tr}_k^E = \operatorname{Tr}_k^F \circ \operatorname{Tr}_F^E$$

If $E = k(\alpha)$ and $f(x) = Irr(\alpha, k) = x^n + a_{n-1}x^{n-1} + ... + a_0$, then

$$\operatorname{Tr}_k^{k(\alpha)}(\alpha) = -a_{n-1}$$

Proposition 2.78 (Linear Map/Matrix Interpretation of Norm and Trace). Let E/k be a finite extension. For $\alpha \in E$, define $m_{\alpha} : E \to E$ by $x \mapsto \alpha x$. Viewing E as a finite dimensional k-vector space, m_{α} is a linear map. Then

$$N_k^E(\alpha) = \det(m_\alpha)$$
 $\operatorname{Tr}_k^E(\alpha) = \operatorname{Tr}(m_\alpha)$

Proposition 2.79. Let E/k be a finite separable extension. Then the map $E \times E \to k$ given by

$$(x,y) \mapsto \operatorname{Tr}(xy)$$

is a bilinear pairing. Furthermore, if we define $\operatorname{Tr}_x: E \to k$ by $\operatorname{Tr}_x(y) = \operatorname{Tr}(xy)$, then the map $E \to E^{\wedge}$ given by $x \mapsto \operatorname{Tr}_x$ is an isomorphism.

Proposition 2.80. Let E/k be a finite separable extension, and let $\sigma_1, \ldots, \sigma_n$ be the distinct embeddings of E into \overline{k} over k. Let w_1, \ldots, w_n be a basis of E over k. Then the vectors

$$\xi_i = (\sigma_i(w_1), \dots, \sigma_i(w_n))$$
 $i = 1, \dots, n$

are linearly independent over E.

Proposition 2.81 (Hilbert's Theorem 90). Let K/k be a cyclic Galois extension of degree n, with Galois group $G = \langle \sigma \rangle$. Let $\beta \in K$. Then $N_k^K(\beta) = 1$ if and only if there exists $\alpha \neq 0$ in K such that $\beta = \frac{\alpha}{\sigma(\alpha)}$.

Proposition 2.82 (Kummer). Let k be a field, and let $n \in \mathbb{N}$ with gcd(n, char k) = 1 (if $char k \neq 0$). Assume that there is a primitive nth root of unity in k.

1. Let K/k be a cyclic Galois extension of degree n. Then there exists $\alpha \in K$ such that $K = k(\alpha)$, and α satisfies the equation $x^n - a = 0$ for some $a \in K$.

2. If $a \in k$ and α is a root of $x^n - a$, then $k(\alpha)/k$ is a cyclic Galois extension of degree d where d|n, and $\alpha^d \in k$.

Proposition 2.83 (Hilber's Theorem 90, Additive Form). Let K/k be a cyclic Galois extension of degree n with Galois group $G = \langle \sigma \rangle$. Let $\beta \in K$. Then $\operatorname{Tr}_k^K(\beta) = 0$ if and only if there exists $\alpha \in K$ such that $\beta = \alpha - \sigma(\alpha)$.

Proposition 2.84 (Artin-Schreier). Let k be a field of characteristic p > 0.

- 1. If K/k is a cyclic Galois extension of degree p, then there exists $\alpha \in K$ such that $K = k(\alpha)$ and α satisfies the equation $x^n x a = 0$ for some $a \in k$.
- 2. If $a \in k$, then the polynomial $x^n x a$ either has one root in k or is irreducible. If it has a root in k, then all roots lie in k. If it is irreducible, then $k(\alpha)/k$ is a cyclic Galois extension of degree p.

2.12 Solvable and Solvable by Radicals

Proposition 2.85. Solvable extensions form a distinguished class.

Proposition 2.86. Extensions that are solvable by radicals form a distinguished class.

Proposition 2.87. Let E/k be a finite separable extension. Then E/k is solvable by radicals if and only if it is solvable.